Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Appl Lab Med ; 7(6): 1379-1387, 2022 Oct 29.
Article in English | MEDLINE | ID: covidwho-2001337

ABSTRACT

BACKGROUND: Therapeutic monoclonal antibodies can be a source of assay interference in clinical serum protein electrophoresis (SPEP) and immunofixation electrophoresis (IFE), producing monoclonal bands that can be misinterpreted as a monoclonal gammopathy related to a B-cell or plasma cell neoplasm. The extent to which new anti-COVID-19 monoclonal antibodies produce this interference is unknown. METHODS: Casirivimab plus imdevimab, sotrovimab, and bamlanivimab plus etesevimab were spiked into patient serum samples to evaluate for SPEP/IFE interference, to characterize the position of therapy-derived bands relative to a reference band (either combined beta band or beta 1 band, depending on instrument platform), and to confirm heavy and light chain utilization of each medication. Serum samples from patients who had recently received casirivimab plus imdevimab or sotrovimab were also evaluated for comparison. RESULTS: When spiked into serum samples, all tested anti-COVID-19 monoclonal antibodies generated interference in SPEP/IFE. Importantly, the patterns of interference differed between spiked serum samples and serum from patients who had recently received casirivimab plus imdevimab or sotrovimab. CONCLUSIONS: Imdevimab can be added to the growing list of therapeutic monoclonal antibodies that produce sustained interference in SPEP/IFE. Although casirivimab and sotrovimab also produce assay interference in vitro, these antibodies are not reliably detected in serum from recently infused patients. The value of relative band position in recognizing bands that may represent therapeutic monoclonal antibodies is also emphasized. Clinicians and laboratorians should consider therapeutic monoclonal antibody interference in diagnostic SPEP/IFE and review a patient's medication list when new or transient monoclonal bands are identified.


Subject(s)
Antibodies, Monoclonal , COVID-19 Drug Treatment , COVID-19 , Humans , Electrophoresis , COVID-19/diagnosis
2.
Infect Control Hosp Epidemiol ; 42(3): 341-343, 2021 03.
Article in English | MEDLINE | ID: covidwho-1131954

ABSTRACT

We implemented universal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing of patients undergoing surgical procedures as a means to conserve personal protective equipment (PPE). The rate of asymptomatic coronavirus disease 2019 (COVID-19) was <0.5%, which suggests that early local public health interventions were successful. Although our protocol was resource intensive, it prevented exposures to healthcare team members.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/epidemiology , Preoperative Care/methods , Surgical Procedures, Operative/statistics & numerical data , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , North Carolina/epidemiology , Personal Protective Equipment/supply & distribution
4.
MMWR Morb Mortal Wkly Rep ; 69(46): 1743-1747, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-937756

ABSTRACT

On university campuses and in similar congregate environments, surveillance testing of asymptomatic persons is a critical strategy (1,2) for preventing transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). All students at Duke University, a private research university in Durham, North Carolina, signed the Duke Compact (3), agreeing to observe mandatory masking, social distancing, and participation in entry and surveillance testing. The university implemented a five-to-one pooled testing program for SARS-CoV-2 using a quantitative, in-house, laboratory-developed, real-time reverse transcription-polymerase chain reaction (RT-PCR) test (4,5). Pooling of specimens to enable large-scale testing while minimizing use of reagents was pioneered during the human immunodeficiency virus pandemic (6). A similar methodology was adapted for Duke University's asymptomatic testing program. The baseline SARS-CoV-2 testing plan was to distribute tests geospatially and temporally across on- and off-campus student populations. By September 20, 2020, asymptomatic testing was scaled up to testing targets, which include testing for residential undergraduates twice weekly, off-campus undergraduates one to two times per week, and graduate students approximately once weekly. In addition, in response to newly identified positive test results, testing was focused in locations or within cohorts where data suggested an increased risk for transmission. Scale-up over 4 weeks entailed redeploying staff members to prepare 15 campus testing sites for specimen collection, developing information management tools, and repurposing laboratory automation to establish an asymptomatic surveillance system. During August 2-October 11, 68,913 specimens from 10,265 graduate and undergraduate students were tested. Eighty-four specimens were positive for SARS-CoV-2, and 51% were among persons with no symptoms. Testing as a result of contact tracing identified 27.4% of infections. A combination of risk-reduction strategies and frequent surveillance testing likely contributed to a prolonged period of low transmission on campus. These findings highlight the importance of combined testing and contact tracing strategies beyond symptomatic testing, in association with other preventive measures. Pooled testing balances resource availability with supply-chain disruptions, high throughput with high sensitivity, and rapid turnaround with an acceptable workload.


Subject(s)
Asymptomatic Diseases/epidemiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Public Health Surveillance/methods , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Humans , North Carolina/epidemiology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Program Development , SARS-CoV-2 , Universities , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL